Gross primary production is stimulated for *Populus* species grown under free-air CO₂ enrichment

Victoria Wittig¹,

Carl Bernacchi¹, Xinguang Zhu¹, Reinhart Ceulemans², Paolo De Angelis³, Birgit Gielen², Franco Miglietta⁴, Patrick B. Morgan¹, Stephen P. Long¹

¹ University of Illinois @ Urbana- Champaign; ² University of Antwerp, Belgium; ³ University of Tuscia, Italy;
 ⁴ Institute of Agrometeorolgy and Environmental Analysis, Italy

Gross Primary Production

GPP = gross photosynthetic carbon assimilation

Driving step of the global carbon cycle

 Forest trees account for large proportion of terrestrial GPP

Intergovernmental Panel on Climate Change (Houghton, 2001)

Two Problems

1. Growing trees in an elevated CO₂ atmosphere: OTC's

2. Measuring GPP of CO₂ enriched trees: Closed Chambers

POPFACE: Poplar Free-Air CO₂ Enrichment

- FACE: No alteration to climate or restriction to growth
- Large scale; short-rotation intensive *Populus* plantation
- Enrichment of CO₂ to 550 ppm in 3 plots;
 3 control plots

FACE Technology

FACE Technology

POPFACE: Poplar Free-Air CO₂ Enrichment

POPFACE

P. x euramericana

Measurements

Photosynthetic Photon Flux Density

(PPFD)-30 min

- •Temperature -30 min
- Leaf Area Index (LAI)-biweekly

Measurements

·Gas exchange measurements

·Maximum rate of electron transport: J_{max}

·Maximum rate of carboxylation: V_{c,max}

Maximum rate of electron transport: J_{max}

RuBP-Limited Photosynthesis

Rubisco-Limited Photosynthesis

A/c, Response Curve

From Measurements to a Model of GPP

Utilize Independent Data to Model GPP

- 1. Data
- 2. Leaf
 Photosynthesis
- 3. GPP

Utilize Independent Data to Model GPP

- 1. Data
- 2. Leaf
 Photosynthesis
- 3. GPP

Farquhar Model of Leaf Photosynthesis (A_{leaf})

A_{leaf}= f(PPFD, T, CO₂, J_{MAX}, V_{C, MAX})

Leaf Photosynthesis (A_{leaf})

$$A_{leaf} = \left[1 - \frac{\Gamma^*}{C_i}\right] \cdot \min\{W_c, W_j\}$$

W_c= Rubisco-Limited photosynthesis

W_j= RuBP-Limited photosynthesis

Forseth & Norman, 1993; Long 1991

Forseth & Norman, 1993; Long 1991

GPP

 $GPP = A_{sun}^* LAI_{sun}^* + A_{shade}^* LAI_{shade}^*$

Hypotheses

1. Elevated CO₂ will stimulate <u>Gross</u>
Primary Production (GPP)

2. Sustained stimulation of GPP throughout rotation cycle (1999-2001)

P. nigra July, 2000

Percent Stimulation Decreased

 Absolute GPP higher in elevated plots all years

 Relative stimulation decreased with canopy closure.

GPP Validation: Net Primary Production (NPP)

- NPP = GPP Autotrophic Respiration (Ra)
- Assuming 40% GPP lost to Ra, can calculate NPP

 Adding up biomass increments from POPFACE and making minor assumptions about litter turnover, can calculate NPP

NPP (t CH₂O ha⁻¹)

Species	GPP(1-0.4)		Biomass increments + root and leaf turnover	
	Control	Elevated	Control	Elevated
P. alba	73	87	63	80
P. nigra	79	103	81	97
P. x euramericana	59	79	66	83
Average Stimulation		27%		24%

^{*}Biomass increments + root and leaf turnover reproduced from Calfapietra *et al.* 2003 and Lukac *et al.* 2003

Discussion

- The decline in relative stimulation in GPP is a function of canopy closure not acclimation
- An increasing proportion of GPP occurs in the shade: RuBP-Limited Photosynthesis
- RuBP-Limited Photosynthesis not as responsive to elevated CO₂ as Rubisco-Limited Photosynthesis

Conclusion

- Hypothesis 1 supported: Stimulation of GPP in elevated CO₂ treatments
- Hypothesis 2 not supported: Although absolute GPP was stimulated in all years, the relative magnitude of the stimulation decreased with canopy closure

Implications

 Important to understand the dynamics in tree canopies

 Sun-shade model effective at capturing these dynamics

GPP can be effectively estimated

Interacting Global Changes:
 Rising CO₂ + Rising O₃

Acknowledgements

Advisor: Steve Long

Long Lab:

Joe Castro, Charles Chen, Emily Heaton, Andy Leakey, Shawna Naidu & Richard Webster

DOE-GCEP:
Graduate
Research for
the
Environment
Fellowship
(GREF)

UIUC Environmental Council

$$Q \operatorname{dir} = I_s * \mathfrak{S}^{((P/Po)/\cos \square)}$$

$$Qdiff = 0.5 * I_s (1- \mathfrak{S}^{((P/Po)/\cos \square)}) * \cos \square$$

Qscat =
$$0.07 * Qdir * (1.1-0.1 * LAI) * e^{(-\cos \square)}$$

$$Qshade = Qdiff * e^{(-0.5 \text{ LAI0.7})} + Q \text{ scat}$$

$$Qsun = Qdir^{(cosd/cos \square)} + Qshade$$

Where: I_s = solar constant; ⊕ = atmospheric transmittance; d = angle between the leaf surface and the direct beam solar radiation; P/Po = ratio of standard and sea level atmospheric pressure